

Incidence of antimicrobial resistant *Escherichia coli* urinary tract infections in the Australian Capital Territory

Oyebola Fasugba^{1, 2}, Anindita Das³, George Mnatzaganian⁴, Brett G Mitchell², Peter Collignon³, Anne Gardner¹

¹Australian Catholic University, ²Avondale College of Higher Education, ³ACT Pathology, ⁴La Trobe University

◆ Background

- Urinary tract infections (UTIs) are one of the most common infections acquired worldwide.
- Escherichia coli (*E. coli*), the pathogen most frequently implicated in UTIs, is becoming increasingly resistant to current antimicrobials.
- ❖ While the prevalence of resistance in urinary *E. coli* is increasing in Australia,¹ the resistance incidence is not well described.
- Prevalence data provides information on disease burden while incidence quantifies the risk of disease.²
- ❖ Investigating both prevalence and incidence is important to gain a better understanding of the epidemiology of urinary *E. coli* resistance in order to make meaningful disease management decisions.²

Aim

This study evaluated:

☐ Incidence of single-drug resistant, multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) *E. coli* UTI in a cohort of Australian Capital Territory (ACT) residents.

☐ Associations of age, gender and urine sample source with risk of resistant infections.

Methods

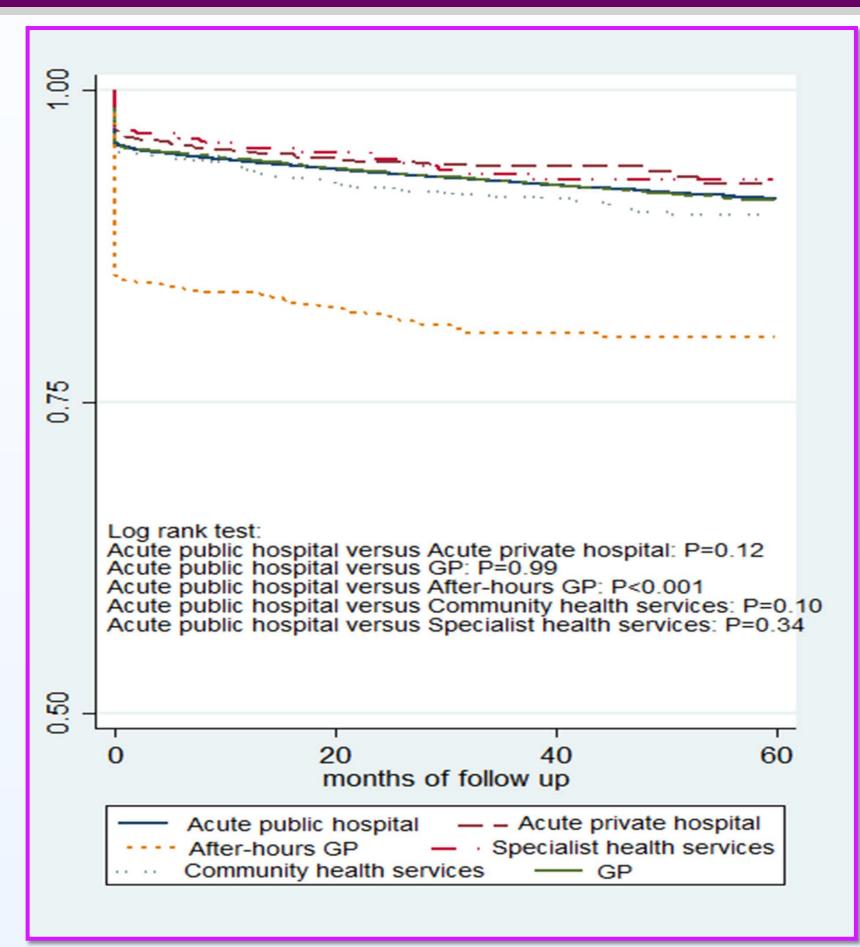
•ACT Pathology is the sole public pathology service for the ACT and provides specialist pathology services to public and private patients in the region.

Methods

- Laboratory-based retrospective data were obtained for all ACT residents who submitted urine samples to ACT Pathology between January 2009 and December 2013.
- Urine cultures with presence of ≥10⁷ cfu/L
 were considered positive for UTI.
- MDR, XDR and PDR were defined based on published international standardised definitions.³
- Multivariate logistic regression models
 were constructed to determine the effect of
 age, sex and urine sample origin (the
 health service requesting the urine sample
 test) on risk of resistance.

URINE SPECIMEN NAME ROOM NO. TIME TOR

Results


- A total of 146,915 urine samples from 57,837 ACT residents were identified over 5 years.
- The mean age of residents was 48 years (standard deviation 26 years) with 64.4% female.
- The incidence of single-drug resistant

 E. coli UTI was high for ampicillin,

 trimethoprim and cefazolin (6.8%, 3.5%

 and 1.9% respectively).
- No PDR *E. coli* UTI was detected.
- ❖ Five-year incidences of MDR and XDR E. coli UTI were 1.9% and 0.2% respectively.
- Female sex and age over 38 years were significantly associated with single-drug resistance and MDR.

Results

Figure 1 Kaplan-Meier curves of incidence of single-drug antimicrobial resistance by urine sample origin

The risk of single-drug resistance was significantly higher in samples from after-hours general practices compared to hospitals, office-hours general practices (GP), community and specialist health services, (adjusted-odds ratio (OR) and 95% confidence intervals (CI) 2.6 (2.2–3.1)) (Figure 1).

Discussion and conclusion

- Detection of single drug-resistant, MDR and XDR *E.coli* UTI emphasises the need for continued monitoring of resistance to ensure suitable empirical therapeutic agents remain available.
- ❖ Higher risk of resistance in patients attending after-hours GP clinics necessitates further research to investigate antimicrobial prescribing practices within these health services.

Acknowledgements

O.F. was supported by an Australian Catholic University Postgraduate Award. Thanks to: Ms Angelique Clyde-Smith and ACT Pathology staff for assisting with data retrieval.

References

- 1. Fasugba O, Mitchell BG, Mnatzaganian G, et al. Five-year antimicrobial resistance patterns of urinary *Escherichia coli* at an Australian tertiary hospital: time series analyses of prevalence data. Plos One. 2016;11:e0164306.
- 2. Buttner P, Muller R. Epidemiology. Victoria, Australia: Oxford University Press, 2011.
- 3. Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268-81.