Emerging & re-emerging foodborne and zoonotic risks

Associate Professor Mark Veitch Acting Director of Public Health, Public Health Services, Department of Health and Human Services, Tasmania Chair, Communicable Diseases Network Australia.

Some of the "new" infectious diseases since I started medicine

1980	HTLV I	1993	Four-corner disease
1980	Hepatitis E	1994	Brazilian HF
1981	Staphylococcal TSS	1994	Hendra virus
1982	E.coli O:157 (EHEC)	1995	Australian Bat Lyssavirus
1982	HTLV II	1996	HHV-8 (Kaposis sarcoma)
1982	Borrelia	1996	var Creutzfeldt-Jakob disease
1983	HIV	1997	Avian influenza, Hong Kong
1983	Helicobacter pylori	1999	Nipah virus
1988	HHV-6	2000	West Nile fever in US
1989	Erlichiosis	2001	Human metapneumovirus
1989	Hepatitis C	2003	SARS coronavirus
1991	Venezuelan HF	2009	Influenza A/H1N1
1992	V. cholerae O139	2012	MERS-CoV

1992 Bacillary angiomatosis

"emerging infectio disease*",* PubMed entries, 1973 to 2015

Emerging infectious diseases

"We can define as emerging infections that have newly appeared in the population, or have existed but are rapidly increasing in incidence or geographic range."

> Stephen Morse in *Emerging Infectious Diseases* (1995) http://www.cdc.gov/ncidod/eid/vol1no1/morse.htm

Factors in infectious disease emergence

Microbial adaptation & change

Medical care & technology

Technology & industry

Intensive food production Extensive irrigation International travel & commerce

> Transmission route Microbe Human Environment

Urbanisation

development & land use)

Ecological changes

(including economic

Human mobility Refugee crises Liberalised trade

> Breakdown in public health measures

Human demographic & behavioural change

Changing population age structure IDU

Sexual behaviour

Climate change Ecosystem disturbance

after Morse, 1995 & McMichael 2001 & 2004

Food-borne and zoonotic diseases

Outline

- Some Tasmanian food-borne & zoonotic risks
 - Tularaemia
 - Q fever
 - Salmonella
 - S. Mississippi
 - S. Typhimurium PT160
 - Antibiotic-resistant serovars
 - Recent trends in food-borne serovars
 - Listeriosis
- Some practical & strategic national responses

A zoonotic disease we're not supposed to have, but ...

Tularaemia

- Francisella tularensis
 - 4 subspecies with different
 - Distribution
 - Ecology
 - Virulence
- Transmission
 - Inhalation
 - => Pneumonia, Septicaemia
 - Direct inoculation or insect bite
 => Ulceroglandular
 - Via water or food
 => Oropharyngeal

Case 1: Zeehan Highway, about 3km on the Queenstown side of the Henty River Bridge

Image: Google Maps

Ringtail possum (*Pseudocheirus peregrinus*) as photographed by its bite victim, Tasmania, Australia, 2011. From Jackson J et al. *Francisella tularensis* subspecies *holarctica*, Tasmania, Australia, 2011. Emerg Infect Dis. 2012; 18(9): 1484-6. <u>http://wwwnc.cdc.gov/eid/article/18/9/11-1856_article.htm</u>

Case 1, February 2011

- Remote western Tasmania
- Ring-tailed possum bite to hand
- Ulceroglanduar tularaemia
- Sequencing of genetic material from the affected tissues
 - F. tularensis subspecies holarctica biovar japonica
- Supported by DFA, real-time PCR & serology
- Treatment complicated, prolonged

Case 1

Case 2: Zeehan Highway, 150-200m NW of Westerway Creek

Image: Google Maps

Sites of the two possum encounters during 2011, in February (Case 1) & September (Case 2)

Public Health Response

- Notifications State, national, WHO
- Ruled out non-possum sources of infection
- Assessed likelihood of bioterrorism
- Alerts field & lab workers, animal handlers, vets, doctors, public
- Sought unrecognised or historical cases
- Risk assessment of rainwater tanks
- Multi-agency, human & animal health
 - Field investigation
 - Surveillance
 - Response plans

Reader's Digest, July 2012

Reader's Digest, July 2012

 ProMED posting

 Emerging Infectious Diseases 2012; 18(9): 1484-6. DISPATCHES

Francisella tularensis Subspecies *holarctica*, Tasmania, Australia, 2011

Justin Jackson, Alistair McGregor, Louise Cooley, Jimmy Ng, Mitchell Brown, Chong Wei Ong, Catharine Darcy, and Vitali Sintchenko

We report a case of ulceroglandular tularemia that developed in a woman after she was bitten by a ringtail possum (*Pseudocheirus peregrinus*) in a forest in Tasmania, Australia. *Francisella tularensis* subspecies *holarctica* was identified. This case indicates the emergence of *F. tularensis* type B in the Southern Hemisphere.

Tularaemia in Tasmania

- The ecology remains largely cryptic
- Advice to at risk is based on general principles
- Clinical vigilance and modern diagnostic methods are our sensors for further cases

A zoonotic disease we're supposed to have ...

Q fever

• Pan-global distribution ...

except ...

Q fever

• Pan-global distribution ...

except ...

... and

???

Q fever notifications, 1995 to 2014

Annual Case count

Annual rate (/10^6)

	Average	Range	Average
ACT	0.65	0 to 2	0.2
NSW	192	128 to 308	2.9
NT	1.4	0 to 5	0.64
QLD	224	131 to 443	5.8
SA	15	4 to 40	0.99
TAS	0.15	0 to 1	0.03
VIC	34	13 to 77	0.69
WA	11	2 to 28	0.48
Australia	479	314 to 792	2.4

Q fever notifications, 1995 to 2014

Annual Case count

Annual rate (/10^6)

	Average	Range	Average	
ACT	0.65	0 to 2	0.2	
NSW	192	128 to 308	2.9	
NT	1.4	0 to 5	0.64	
QLD	224	131 to 443	5.8	• 6- to 80- fold lower
SA	15	4 to 40	0.99	rate than
TAS	0.15	0 to 1	0.03	elsewhere
VIC	34	13 to 77	0.69	in Australia
WA	11	2 to 28	0.48	• 3 cases in
Australia	479	314 to 792	2.4	20 years

Risks?

Geelong

Meredith goat's cheese maker's million-dollar push to find Q fever vaccine

October 23, 2015 11:18am
 Mandy Squires Geelong Advertiser

Goat farmer Sandy Cameron. and Dr John Stenos. Picture: Mike Dugdale

THE owner of Meredith Dairy is spending more than \$1 million to fund the development of a vaccine to fight a Q fever outbreak on his property.

Risks?

Do changing agricultural practices pose a risk of introduction & establishment? Geelong

Meredith goat's cheese maker's million-dollar push to find Q fever vaccine

October 23, 2015 11:18am
 Mandy Squires Geelong Advertiser

Goat farmer Sandy Cameron. and Dr John Stenos. Picture: Mike Dugdale

THE owner of Meredith Dairy is spending more than \$1 million to fund the development of a vaccine to fight a Q fever outbreak on his property.

Salmonella

Salmonella in Tasmania, 1995 to 2014

Year

Notifications to CDPU

Salmonella Mississippi

- Most common serotype in Tasmania
 - Serotype-specific rate very high
 - Environmental exposure, native animals, raw water
 - Very rare elsewhere in Australia
- Restaurant outbreak, late 2012
 - Epidemiological link to salad, mostly Tasmanian
 - Coincident increase in community cases
 - Are we missing foodborne transmission?
 - Changing production or consumption patterns?

Salmonella Typhimurium PT 160

- Rare in Australia before 2008
- New Zealand

Epidemic and enzootic from ~2000

- Emerged in Hobart in 2008
 - Human cases
 - Suburban & semi-rural
 - Some direct and indirect bird contact
 - Coincident sparrow deaths, isolates of STm 160
 - Infection in other birds & mammals uncommon

Human Cases of *Salmonella* Typhimurium PT 160, Tasmania, 2008 to late 2015 *

Year

* Notifications to CDPU, to 24-Nov-15

The Birdbath Katherine Cooper

Resistant monophasic Salmonella -Tasmania

- Salmonella subsp | ser 4,5, 12:i:- (PT 193)
- Resistant to amp, strep, sulpha
- September 2015
 - 3 cases
 - farmer, abattoir worker, contact with ill calf
 - reports of salmonellosis in cattle (similar time & region)

Salmonella Typhimurium - Tasmania

- Large egg-associated outbreaks
 - 2005, 2007-08
 - Producer closed
 - Raw egg guideline developed
- Fewer, small outbreaks

 Phage types of sporadic disease now mostly similar to mainland Australia

Salmonella - Australia

- Highest rates ever, almost everywhere
- S. Typhimurium
 - 40 50% of cases in most states
 - Major contributor to overall increase, esp. egg-associated phage types
- Emerging evidence of *S*. Typhimurium linked to eggs
 - Salmonella outbreaks with egg-containing vehicles, 2001 to 2012 (n=166) *
 - 150 were S. Typhimurium (PT 170/108, PT 44, PT9)
 - Trace-backs & environmental testing *
 - ~50% of tested farms had strains of *S*. Typhimurium matching outbreak strain
 - Source attribution studies #
 - Modelled South Australian data for 2000 to 2010
 - Eggs were major source (~50%) of human salmonellosis
- Risk of contamination per egg very low, but ...
 - Egg consumption massive
 - Pooled eggs amplify risk

* OzFoodNet data (unpublished) # Glass K et al. Bayesian Source Attribution of Salmonellosis in South Australia. Risk Anal. 2015 Jul 1 (in press)

Listeriosis – National surveillance 1.0

- Virgin chicken wrap outbreak, 2009
- Surveillance activities woven together
 - Commonwealth & jurisdictional Health Depts
 - Public Health Labs
 - Diagnostic and testing Labs
 - Limitations
 - Typing nomenclature complex, interpretation difficult
 - Lack of central coordination & regular reporting

Listeriosis – National surveillance 2.0

- OzFoodNet Epidemiological coordination
- Agreed suite of typing & nomenclature

Molecular serotype	Binary Type	PFGE patterns	MLVA	MLST
1/2c, 3c	82	8E:110B:2T	04-20-20-04-03-13-10-04-00	9

- Regular reporting
- More potential links identified
 - Cases with shared typing more, smaller clusters
 - Case & product "pairs". Significance?

- 3 cases, all at high risk
 - Onset 30 September 2012
 - Onset 15 September 2013
 - Onset 11 August 2014
- All exposed to hospital during incubation

- 3 cases, all at high risk
 - Onset 30 September 2012
 - Onset 15 September 2013
 - Onset 11 August 2014
- All exposed to hospital during incubation
- All same molecular subtype

- 3 cases, all at high risk
 - Onset 30 September 2012
 - Onset 15 September 2013
 - Onset 11 August 2014

- All exposed to hospital during incubation
- All same molecular subtype
- Extensive investigation, testing & cleaning after second & third cases
 - Implicated subtype detected after third case in kitchen equipment & sandwiches
- Low *Listeria* diets?

Listeriosis – National surveillance 3.0

- Further building on existing processes
 - Efficient use of genomics, laboratory capacity, bioinformatics
 - Epidemiological hub (OzFoodNet)
 - Fortnightly reporting

Challenges – 1

- Genomics & bioinformatics
- Culture independent diagnostics
- Cost, clinical versus public health imperatives

- Underlying determinants of EIDs

 political, economic, industrial, legal, social
- Risk communication

Challenges – 2

- Infection control & prevention around EIDs
 - Practically often straightforward
 - But emerging pathogens may be unfamiliar
 - (first responders, animal & human health clinical and laboratory agencies)
 - Different processes
 - Difficult risk communication
- Managing public health aspects of EID needs ...
 - "One Health" thinking & relationships & capacity
 - Engaged hospital & healthcare services
 - particularly IPC and S&Q domains

Practical & Strategic National Responses

Series of National Guidelines (SoNGs)

- Avian influenza ٠
- Dengue ۲
- Ebolavirus •
- Haemophilus influenzae type b ۲
- Hendra virus ٠
- Hepatitis A ٠
- Hepatitis C ٠
- HIV •
- Invasive Meningococcal Disease ۲
- Influenza ۲
- Legionellosis ٠

Measles •

- **MERS-CoV** •
- **Murray Valley Encephalitis** •
- Pertussis •
- **Rabies & ABLV** •
- Syphilis •
- Trachoma
- **Tuberculosis**

http://www.health.gov.au/cdnasongs

National Framework for Communicable Disease Control

- Focus of initial Implementation Plan ...
 - Leadership & governance
 - Surveillance & public health laboratory testing
 - Information systems & research capacity

http://www.health.gov.au/internet/main/publishing.nsf/Content/ohp-natframe-communic-disease-control.htm

Practical & Strategic National Responses

- Emergency Response Plan for Communicable Diseases of National Significance
- Networks such as OzFoodNet
- Centres and CREs for EIDs, Biosecurity, Emergency Responses, Antimicrobial Resistance ...

Thank-you

- Colleagues
 - Michelle Harlock (OzFoodNet, Tas)
 - Public Health Services
 - DPIPWE
 - CDNA
 - NCEPH, ANU
 - UTas
 - MDU, University of Melbourne
 - ... in Infectious Diseases, Infection Control, Microbiology, Public Health

Sheoak on Second Bluff Lola Burrows