

The incidence and cumulative risk of primary bloodstream and venous infections in 12,942 peripheral intravenous catheters in Australia

Professor Claire Rickard, <u>Ms Emily Larsen</u> (Presenter), Ms Nicole Marsh, Professor Joan Webster, Mr Gabor Mihala, Dr Naomi Runnegar

DISCLOSURES

Disclosure: AVATAR research is supported by competitive government, university, hospital and professional organisation research grants as well as industry unrestricted donations, investigator initiated research/educational grants and occasional consultancy payments from the following companies:

-3M, Angiodynamics, Baxter, BBraun, BD, Carefusion, Centurion, Cook, Entrotech, Hospira, ResQDevices, Smiths, Teleflex, Vygon.

This presentation is independently prepared and reflects no commercial entity nor promotes particular products unless these are supported by research data.

What will be covered?

- 1. The clinical problem PIVC-BSI
- 2. Study aims and methods
- 3. Definitions and included studies
- 4. Findings results of 12, 942 PIVCs in Australia
- 5. Clinical scenarios and conclusions

Clinical Problem: PIVC failure

Occlusion

Inability to infuse through a previously functioning PIVC

Infiltration and extravasation

Leakage of a infusate into surrounding tissue

Dislodgement

Partial or complete dislodgement of the PIVC out of the vein

Phlebitis

Irritation or inflammation of a vein wall

Infection

Local infection at the insertion site.

Catheter related blood stream infection

PIVC failure is reported to range from **33-69**%

PIVC - BSI

Guidelines for the Prevention of Intravascular Catheter-Related Infections, 2011

Table 1. Catheters used for arterial and venous access

Catheter type	Comments
Peripheral venous catheters	Phlebitis with prolonged use; rarely associated with bloodstream infection

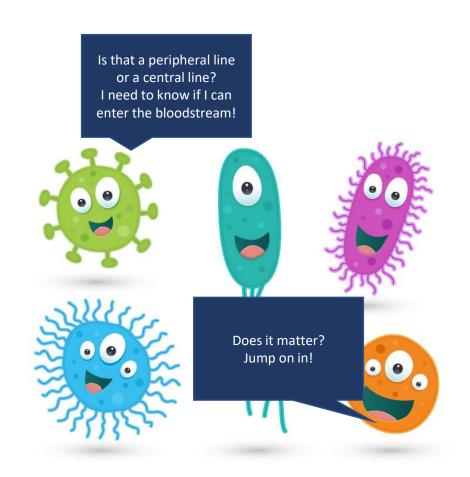
PIVC - BSI

Reviews

Paper	N	PRBSI % (95%CI)	/1000 days
Maki, Mayo Clin Proc 2006	10910	0.1% (0.1-0.2%)	0.5 (0.2-0.7)

• 10 prospective studies

Risk 1 in 1000 PIVCs


Paper	N	P-BSI %	/1000 days
Mermel, Clin Infect Dis 2017	85063	0.18%	0.5

- 37 prospective & retrospective studies Risk 1 in 550 PIVCs
- *65,000 came from French national point prevalence report

PIVC / CLABSI

- 3 000 CVADs
- Rate 2.5%
- Total cases 75

- 150 000 PIVCs
- Rate 0.1%
- Total cases **150**

Study Aims and Methods

Study aim:

To synthesize prospective studies for incidence of PIVC associated infections

Study questions:

- What is the incidence of PIVC-BSI?
- 2. Is there a rise by day of dwell?
- What are the common clinical scenarios ?

Inclusion:

- 1. AVATAR Studies
- 2. Prospective
- 3. Dwell time measured
- 4. Infection endpoints

Observational Study of Peripheral Intravenous Catheter Outcome in Adult Hospitalized Patients: A Multivariable Analysis

DEFINITIONS

Classified by blinded infectious diseases physician

Surveillance Definitions

CDC/NHSN Surveillance Definitions for Specific Types of Infections

VASC-Arterial or venous infection

Note: If a patient meets the criteria for an LCBI in the presence of an intravascular infection report as an LCBI not as a VASC. **

Arterial or venous infection must meet at least one of the following criteria:

- Patient has organism(s) from extracted arteries or veins identified by a culture or non-culture based microbiologic testing method which is performed for purposes of clinical diagnosis or treatment, for example, not Active Surveillance Culture/Testing (ASC/AST).
- 2. Patient has evidence of arterial or venous infection on gross anatomic or histopathologic exam.
- Patient has at least <u>one</u> of the following signs or symptoms: fever (>38.0°C), pain*, erythema*, or heat at involved vascular site*

AND

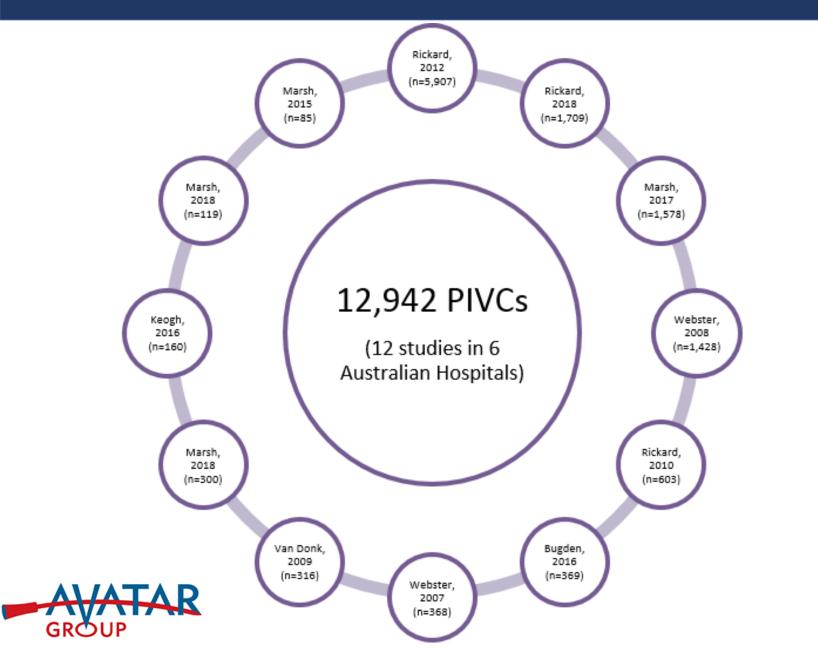
More than 15 colonies cultured from intravascular cannula tip using semi-quantitative culture method.

- 4. Patient has purulent drainage at involved vascular site
- Patient ≤1 year of age has at least <u>one</u> of the following signs or symptoms: fever (>38.0°C), hypothermia (<36.0°C), apnea*, bradycardia*, lethargy*, pain*, erythema*, or heat at involved vascular site* AND

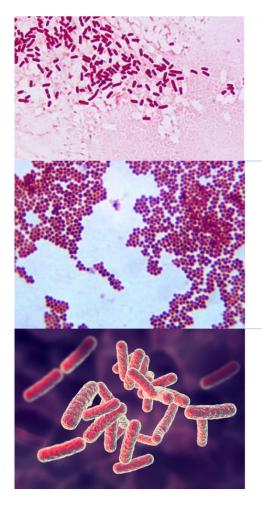
More than 15 colonies cultured from intravascular cannula tip using semi-quantitative culture method

* With no other recognized cause

- 1. VASC Infection (local)
- 2. Primary BSI (PLABSI)
- 3. BSI-LCBI (PRBSI)
- 4. SAB*


*Staphylococcus aureus BSI (SAB):

- Australian Commission of Safety and Quality in Healthcare criteria, and
- Stuart's criteria (Med J Aust, 2013)


Included Studies

- ✓ 12 studies
 - 11 RCTs
 - 1 Cohort
- ✓ 12,942 PIVCs(44, 080 PIVC days)
- √ 6 hospitals
 - 4 regional
 - 2 metro

FINDINGS

Enterobacter cloacae

X3
(1 x Primary BSI; 2 x BSI-LCBI)

Staphylococcus aureus

X 1
(Primary BSI)

Pseudomonas aeruginosa

X1

S. aureus, GP Cocci, GP Bacilli, GN Bacilli

FINDINGS

Infection	Cases (n=)	Incidence	/1000 device- days
CVS-VASC (Local Infection)	4	0.03%	0.09
Primary BSI (PLABSI)	5	0.04%	0.11
- BSI-LCBI (PRBSI)	3	0.02%	0.07
- SAB	1	0.01%	0.02

Life Table of Primary BSIs by day of catheter dwell

Day	N	PLABSI	Day-specific Risk (%)	95%CI
0-1	12942	0	0.00	
1-2	11549	2	0.01	0.00-0.05
2-3	8258	0	0.00	
3-4	4940	1	0.02	0.00-0.07
4-5	2560	0	0.00	
5-6	1393	1	0.07	0.00-0.26
6-7	842	1	0.12	0.00-0.44
7-8	504	0	0.00	
8-9	295	0	0.00	
9-10	195	0	0.00	
10-42	469	0	0.00	

FINDINGS

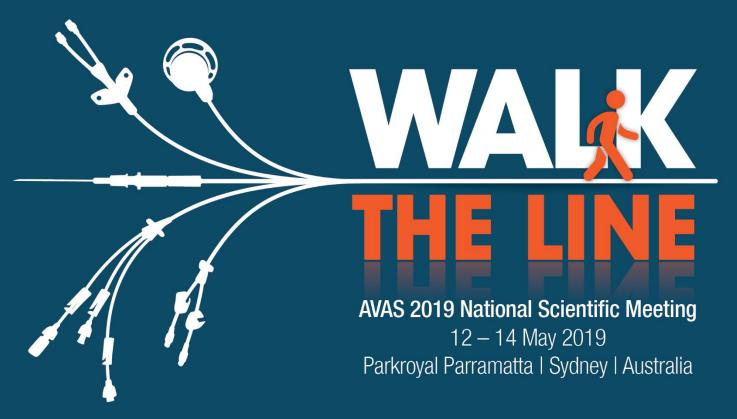
Clinical Scenarios

Primary BSIs were associated with:

- 1. GIT surgery in patients with cancer
- 2. suspected non-PIVC sources (not microbiologically proven)
- 3. asymptomatic or mildly painful insertion sites
- 4. symptomatic insertion sites post removal
- 5. non-replacement due to difficult/unsuccessful reinsertions

CONCLUSIONS

- Complex patients most at risk
- Need better monitoring including post removal
- Need better insertions and less of them
- Each dwell day has BSI risk, but later days not worse than earlier
- About 3375 PLABSIs & 6250 CLABSIs occur p.a. in Australia
- Campaigns for BSI prevention Improve device choice, insertion,
 care, monitoring, removal criteria



REFERENCES

- Bausone-Gazda, D., Lefaiver, C. A., & Walters, S. A. (2010). A randomized controlled trial to compare the complications of 2 peripheral intravenous catheter-stabilization systems. Journal of Infusion Nursing, 33(6), 371-384.
- Rickard, C.M., et al., Routine versus clinically indicated replacement of peripheral intravenous catheters: a randomised controlled equivalence trial. Lancet, 2012. 380(9847): p. 1066-74.
- Webster, J., et al., Routine care of peripheral intravenous catheters versus clinically indicated replacement: randomised controlled trial. BMJ 2008. 337(a339).
- O'Grady, N.P., et al., Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control, 2011. 39(4 Suppl 1): p. S1-34.
- Maki, D., D. Kluger, and C. Crnich, The risk of bloodstream infection in adults with different intravascular devices: a systematic review of 200 published prospective studies. Mayo Clin Proc, 2006. 81(9): p. 1159-1171.
- Mermel, L.A., Short-term Peripheral Venous Catheter-Related Bloodstream Infections: A Systematic Review. Clin Infect Disease, 2017. 65(10): p. 1757-1762.
- Rickard CM, et al., Dressings and securements for the prevention of peripheral intravenous catheter failure (SAVE Trial) in adults: a pragmatic, randomised, controlled, superiority trial. The Lancet, 2018, 392, p.419-430.
- Marsh, N., et al., Observational study of peripheral intravenous catheter outcomes in adult hospitalised patients a multivariable analysis of peripheral intravenous catheter failure. J Hosp Med, 2017. 12: p. E1-E7.
- Rickard, C.M., et al., Routine resite of peripheral intravenous devices every 3 days did not reduce complications compared with clinically indicated resite: a randomised controlled trial. BMC Med, 2010. 8: p. 53.
- Bugden, S., et al., Skin glue reduces the failure rate of emergency department-inserted peripheral intravenous catheters: an randomized controlled trial. Annals Emerg Med, 2016. 68(2): p. 196-201.
- Webster, J., et al., Developing a Research base for Intravenous Peripheral cannula re-sites (DRIP trial). A randomised controlled trial of hospital in-patients. International Journal of Nursing Studies, 2007. 44(5): p. 664-671.
- Van Donk, P., et al., Routine replacement vs clinical monitoring of peripheral IV catheters in a regional hospital in the home program: A RCT. Infect Control Hosp Epidemiol, 2009. 30(9): p. 915-917.
- Marsh, N., et al., A novel integrated dressing to secure peripheral intravenous catheters in an adult acute hospital: a pilot randomized controlled trial. 2018. Trial, 19(1), p.596.
- Keogh, S., et al., Varied flushing frequency and volume to prevent peripheral intravenous catheter failure: a pilot, factorial randomised controlled trial in adult medical-surgical hospital patients. Trials, 2016. 17: p. 248.
- Marsh, N., et al., Expert versus generalist peripheral intravenous catheter insertion: a pilot randomised controlled trial (The RELIABLE Trial). Trials, 2018, 19(1), p.564.
- Marsh, N.M., et al., Securement methods for peripheral venous catheters: A randomised controlled pilot trial. J Vasc Access, 2015. 16(3): p. 237-44.
- NHSN, National Healthcare Safety Network (NHSN) Patient Safety Component Manual, CDC, Editor. 2018, NIH: Atlanta. p. 1-30.
- Australian Commission for Safety and Quality in Health Care, Implementation Guide for Surveillance of Staphylococcus aureus Bacteraemia, DoHA, Editor. 2013, Commonwealth of Australia: Sydney. p. 1-18.
- Stuart, R.L., M.L. Grayson, and P.D.R. Johnson, *Prevention of peripheral intravenous catheter-related bloodstream infections: the need for routine replacement.* MJA, 2013. **199**(11): p. 751.

Australian Vascular Access Society
Promoting safety and excellence in Vascular Access