IPC and **ASP** Dr Ling Moi Lin Director Infection Prevention & Epidemiology Singapore General Hospital ## Disclosure • 3M Aesculup Academy • MSD # Objectives of antimicrobial stewardship program (ASP) - Achieve best clinical outcomes related to antibiotic use while minimizing toxicity and limiting the selective pressure on bacterial populations that drive the emergence of AMR - Primarily - Optimising antimicrobial use - Cost-effective interventions - AMR prevention and control - IPC and ASP ## Impact on cost - Reduction in cost after the implementation of ASPs - range, 9.7% – 58.1% reduction in cost in the intervention period/arm | Church | Carratur as Danian | Tune of Coats | Cost Changes Between Intervention vs | Statistical | |-------------------------------|--------------------|---|---|------------------------------------| | Study | Country or Region | Type of Costs | Control or Prior to Intervention (% Change) | Significance | | Two-group comparative s | | | | | | Cai, 2016 [30] | Singapore | Cost of total antimicrobial use | Reduced SGD 90 045 after intervention (details NA) | ND | | Taniguchi, 2015 [59] | Japan | Cost of total antimicrobial use | JPY 5409051 vs JPY 12894159 (58.1% reduction) | ND | | Shen, 2011 [18] | China | Cost of individual antimicrobial use (mean ± SD) and individual hospital tal hospitalization (mean ± SD) | Antimicrobial use: USD 832.0 ± 373.0 vs
943.9 ± 412.0 (13.3% reduction)
Hospitalization: USD 1442.3 ± 684.9 vs
\$1729.6 ± 773.7 (16.6% reduction) | P = .01
P < .001 | | Before–after trial | | | | | | Fukuda, 2014 [25] | Japan | Cost of antimicrobial therapy per 1000 patient-days (mean) | USD 4555.0 vs 6133.5 per 1000 patient-
days (25.8% reduction) | P = .005 | | Lin, 2013 [45] | Taiwan | Cost of antimicrobial therapy per 1000 patient-days (mean) | USD 12146 vs 21464 per 1000 patient-
days (43.4% reduction) | P = .02 in trend analysis | | Teo, 2012 [21] | Singapore | Cost of total and audited antimicro-
bial use in 12-mo periods | Total antimicrobials: reduced USD 141554 in (7.1% reduction) after intervention Audited antimicrobials: reduced USD 198575 (13.2% reduction) after intervention | P = .15
P = .01 | | Ikeda, 2012 [37] | Japan | Cost of total antimicrobial use in 14-mo periods | USD 2.73 million vs 3.49 million (21.7% reduction) | ND | | Niwa, 2012 [20] | Japan | Annual cost of total antimicrobial use | USD 1.86 million vs 2.02 million (11.7% reduction) | ND | | Miyawaki, 2010 [43] | Japan | Annual cost of total antimicrobial use | JPY 262 528 000 vs 290 596 000 (9.7% reduction) | ND | | Cheng, 2009 [16] | Hong Kong | Annual cost of total antimicrobial use | USD 1.32 million vs 1.50 million (12.0% reduction) | ND | | Ng, 2008 [48] | Hong Kong | Annual cost of total antimicrobial use
Monthly cost of restricted antimicro-
bial use per 1000 patient-days
Monthly cost of nonrestricted antimi-
crobial use per 1000 patient-days | USD 1.65 million vs 1.96 million (15.8% reduction) USD 3906 vs 7293 (46.4% reduction) USD 3946 vs 4414 (11.9% increase) | ND
P < .001
P = .003 | | Apisarnthanarak, 2007
[53] | Thailand | Mean cost of antibiotics and hospi-
talization for treatment of VAP per
patient | Antibiotics: USD 2378 vs 4769 (45%–
50% reduction)
Hospitalization: USD 254 vs 466 (37%–45%
reduction) | <i>P</i> < .001
<i>P</i> < .001 | | Apisarnthanarak, 2006
[41] | Thailand | Total cost saving from the reduction in antimicrobial use | USD 52219 vs 84450 (38.2% reduction) | P < .001 | | Incidence of Microorganisms or Infections | Range, Absolute Risk
Difference After ASP
Implementation | Studies, First Author | |--|---|---| | Clostridium diffcile infection Incidence | −3.2% to −1.2% | Liew, 2015 (Singapore, [29]); Lew, 2015 (Singapore, [26]) | | MRSA Overall incidence density Resistance rate | -1.4 to -0.9 per 1000patient-days-14.5% to 0% | Chen, 2015 (Taiwan, [28]); Fukuda, 2014 (Japan, [25]); Yeo, 2012 (Singapore, [22]); Niwa, 2012 (Japan, [20]); Miyawaki, 2010 (Japan, [43]), Buising, 2008 (Australia, [34]); Apisarnthanarak, 2006 (Thailand, [41]) | | ESBL-producing Enterobacteriaceae Overall incidence density Proportion of ESBL-producing Enterobacteriaceae | -0.1 per 1000 patient-days
-12.0% to +12.5% | Chan, 2011 (Taiwan, [36]); Fukuda, 2014 (Japan, [25]); Kim, 2008 (Korea, [35]); Apisarnthanarak, 2006 (Thailand, [41]) | | MDR or carbapenem-resistant Pseudomonas spp Overall incidence density Proportion of carbapenem-resistant Pseudomonas spp | -0.5 per 1000 patient-days
-22.2% to +1.5% | Fukuda, 2014 (Japan, [25]); Zou, 2015 (China, [51]);
Chen, 2015 (Taiwan, [28]); Yeo, 2012 (Singapore,
[22]); Niwa, 2012 (Japan, [20]); Ikeda, 2012
(Japan, [37]); Yong, 2010 (Australia, [61]), Kim,
2008 (Korea, [35]) | | MDR or carbapenem-resistant Acinetobacter spp Overall incidence density | -20.14 to -0.1 per 1000patient-days-40.0 per person-years per100000 admissions | Cheon, 2016 (Korea, [31]); Chen, 2015 (Taiwan, [28]), Lew, 2015 (Singapore, [26]); Yeo, 2012 (Singapore, [22]); Kim, 2008 (Korea, [35]) | | Proportion of MDR or carbapenem-
resistant <i>Acinetobacter</i> spp | -7.1% to +37.5% | | | | | Clinical Infectious Diseases® 2017;64(S2):S119–26 | ## **Box 1 Effective antibiotic stewardship program** #### ASP leadership team - ID clinician ASP team leader - Clinical ID-trained PharmDs - Tracks and reports antibiotic use - Conduct prospective audits to assess effectiveness of ASP interventions #### Antibiotic education - Medical staff education on optimal antibiotic therapy - Medical staff education on antibiotic resistance - Medical staff education on antibiotic-related C difficile #### Administration support - ASP personnel funding - Dedicated IT personnel funding #### Liaison relationships - Medical microbiology laboratory on resistance - Infection control and hospital epidemiology on containment of resistance and control of *C* difficile ## IPC is part of <u>core</u> team in ASP | Common Gaps and Challenges in Implementing
Hospital AMS Programs in Asia ^a | Potential Solutions to Overcoming Gaps in Hospital AMS Programs ^b | | |--|---|--| | Lack of epidemiological data and surveillance systems | Prioritize obtaining support for microbiology laboratory services for reliable culture-guided therapy, AMR
surveillance and provision of hospital antibiograms | | | Lack of awareness of AMR | Provide regular report of AMR data and AMS program performance to relevant hospital departments and
hospital administration | | | Weak infrastructure | • If there is no infrastructure to set up IT systems to support a hospital AMS program, a paper-based system can be used in conjunction with syndrome-specific guidelines. | | | Insufficient education and training of hospital staff | Obtain formal support from hospital administration for infectious disease and AMS training, and appropriate time commitment and remuneration for AMS providers based on the size of the hospital Consider obtaining external infectious disease specialist advice and training from a more well-resourced hospital | | | Limited funding | Provide hospital administrators with credible business case to persuade them that funding of an AMS program is beneficial to the hospital Start small and build capacity over time; gradually introduce AMS interventions by hospital unit or ward | | | Prescriber resistance to AMS | Provide regular feedback and education to prescribers in an easily interpreted format Make efforts to understand the reasons for noncompliance to AMS recommendations and rectify the problems. | | | Poor infection control | Include an infection control personnel in the AMS core team AMS and infection control teams work together under the same leadership to achieve the goal of reducing the rate of multidrug-resistant infections. | | | Barriers | n (%) | |---|---------| | Deficiencies in antimicrobial stewardship knowledge | 10 (42) | | IP | 4 (16) | | Pharmacist | 3 (13) | | Physician | 3 (13) | | Political/social tensions in the hospital | 9 (38) | | IP | 3 (13) | | Pharmacist | 1 (4) | | Physician | 5 (21) | | Time constraints | 13 (54) | | IP | 5 (21) | | Pharmacist | 5 (21) | | Physician | 3 (13) | | AMS is a lower priority relative to competing activities or demands | 14 (58) | | IP | 4 (17) | | Pharmacist | 4 (17) | | Physician | 6 (25) | | IP staffing levels | 11 (46) | | IP | 4 (17) | | Pharmacist | 4 (17) | | Physician | 3 (13) | | Communication difficulties between concerned groups | 11 (46) | | IP | 3 (13) | | Pharmacist | 3 (13) | | Physician | 5 (21) | | Outside of IP role definition "It's not my job" | 8 (33) | | IP | 2(8) | | Pharmacist | 2(8) | | Physician | 4 (17) | | No barriers exist | 5 (21) | | IP | 2(8) | | Pharmacist | 2(8) | | Physician | 1 (4) | - 42% participants indicated that IPs have deficiencies in antimicrobial stewardship knowledge - When asked whether political/ social tensions hindered IP involvement - 38% indicated yes and were mostly physicians (21%) - Most common barriers - ASP as a lower priority (58%) - Time constraints (54%) - IP staffing levels (46%) - Communication difficulties (46%) - ASP is not part of the IP role (33%) | Table 2 Antimicrobial consumption metrics | | | | | | |---|---|--|---|--|--| | Metric | Definition | Advantages | Disadvantages | | | | Numerator (cons | Numerator (consumption metric) | | | | | | Defined daily
dose (DDD) | Average maintenance dose per day for a drug used for its main indication in adults Grams of antibiotic administered, purchased, or dispensed divided by WHO-assigned DDD (found on WHO Web site) | Can be used for international benchmarking as other countries use DDD Does not require administration data Facilitates cost analyses | Discrepancies between WHO-assigned DDD and dose used in practice leads to inaccurate assessment of use Not appropriate for use in pediatric patients Not an accurate reflection of use in renal impairment | | | | Days of
therapy
(DOT) | Aggregate sum of calendar days during
which a patient received any amount of an
antibiotic as documented in the eMAR
and or BCMA data | Recommended metric by IDSA/SHEA ASP guidelines Required for participation in CDCs NHSN AU module (referred to as "antimicrobial days") Appropriate for use in pediatric patients Not affected by discrepancies between WHO-assigned DDD and dose used in practice | Not as useful for international benchmarking as other countries use DDD Not an accurate reflection of use in renal impairment Requires administration data, which may not be obtainable in all institutions | | | | Denominator (pa | atient time at risk) | · | | | | | Patient days | • Manual or electronic count of the number of patients in a location measured at the same time each day (ie, a daily census count at 12 AM) | Information is readily available from infection control data Historically the gold standard, ASPs and infection control are familiar with the metric | May miss a partial patient day on the day of admission or discharge depending on time of daily count Not used in CDCs NHSN module for reporting AU Underestimates person time | | | | Days present | Electronic count of calendar day when a
patient is present in a location for any
portion of the calendar d based on ADT
data | Used in CDCs NHSN module for reporting
AU Better fit for capturing partial days | Requires electronic capture of continuous
ADT data overestimates person time especially in
units with short stays Novel metric, ASPs and infection control
are less familiar with metric | | | Med Clin N Am 102 (2018) 965–976 | Table 3 Potential metrics for outpatient antibiotic stewardship programs | | | | |--|---|--|--| | Measures | Metrics | | | | Antimicrobial consumption | Antimicrobial prescribing rates by drug, diagnosis, and prescriber | | | | Quality/Process | Local or national guideline compliance Unnecessary prescribing for syndromes that do not require antibiotics (eg, asymptomatic bacteriuria, viral illnesses, acute bronchitis, nonsuppurative otitis media) Vaccination rates | | | | Clinical outcomes | Clinical and microbiologic cure Treatment failure Rate of CA-CDI Rate of drug-resistant pathogens | | | | Unintended consequences | Adverse drug events/toxicities Rates of hospital admission, emergency department visits, or return office visits | | | ## **Baby steps** - ASP program at 1600 bedded acute tertiary care hospital launched in 2008 - One-page antibiotic guidelines for infections of major organs - Intravenous-to-oral (IV-to-PO) conversion algorithm to guide direct conversion or de-escalation - A two-stage prospective audit of selected antibiotics with immediate concurrent feedback ### **Cost effectiveness:** **Review October 2008 – September 2010** • Overall acceptance = 77.8% • Shorter LOS (10.2 \pm 18.6 days vs 16.6 \pm 21.6 days(P = 0.009) Daily savings of SGD 106.54 (direct savings on antibiotic cost) Reduction of 6.4 days in hospital stay led to a savings of SGD 6683.33 per patient ## Benefits of de-escalation therapy - Carbapenem de-escalation at a 1500-bedded hospital - Review from day 3 of carbapenem use - Sep 2011 Dec 2012 - 68% acceptance - Shorter duration of carbapenem therapy (6 days vs 8 days, p<0.001) - Lower adverse drug reactions (4% vs 12.5%, p=0.037) - Lower incidence of carbapenem-resistant *Acinetobacter baumannii* acquisition (2.0% vs 7.3%, p=0.042) - Lower incidence of CDAD (1.0% vs 4.2%, p=0.081)