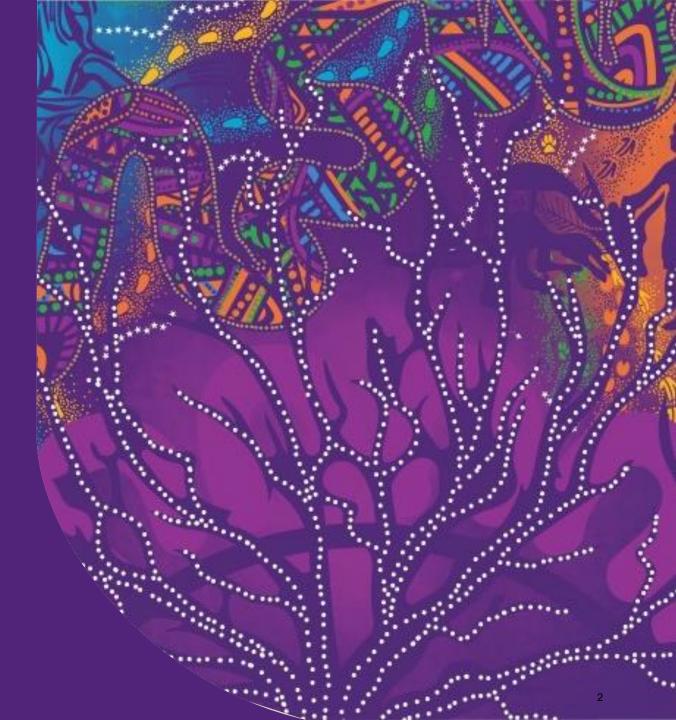
HERSTON INFECTIOUS DISEASES INSTITUTE

DART 3: A pragmatic stepped wedge cluster randomised trial of ultrasound guidance to reducing multiple PIVC insertions in hospitalised patients

Dr Jessica Schults

on behalf of the larger investigator team:

Dr Nicole Marsh, Dr Amanda Ullman, Tricia Kleidon, Dr Robert Ware, Dr Joshua Byrnes, Emily Young, Dr Lisa Hall, Dr Gerben Keijzers, Dr Louise Cullen, Dr Pauline Calleja, Dr Steven McTaggart, Dr Nathan Peters, Dr Stuart Watkins, Dr Amanda Corley, Christine Brow, Zhen Lin, Frances Williamson, Luke Burgess, Dr Fiona Macfarlane, Dr Marie Cooke, Callan Battley



Acknowledgment of **Country**

We acknowledge the Traditional Owners and their custodianship of the lands on which we meet.

We pay our respects to their Ancestors and their descendants, who continue cultural and spiritual connections to Country.

We recognise their valuable contributions to Australian and global society.

No conflicts of interest to declare

Difficult IntraVenous Access (DIVA)

Characterised by: Limited suitable veins

Evident in: Half of hospitalised patients; one-third of ED

presentations

Defined by: So many ways...

Table 3. Multivariate regression analyses.

Factor	ß	SE	p Value	Odds Ratio	95% CI
History of a difficult intravenous cannulation	0.976	0.180	<0.001	2.7	1.6 to 4.4
Practitioner's expectation of a difficult intravenous access	0.936	0.191	<0.001	2.6	1.6 to 4.0
No palpable vein after tourniquet placement	1.670	0.187	<0.001	4.8	2.5 to 8.1
No visible vein after tourniquet placement	1.879	0.192	<0.001	5.9	2.5 to 10.1
Diameter of the vein less than 3 millimeters after tourniquet placement	1.247	0.094	<0.001	3.5	2.7 to 4.4

Constant β 8.950, SE 0.543, p < 0.001. SE = Standard Error. CI = Confidence Interval.

Carr et al JHM 2017

Scoping RV of 13 DIVA tools, rules and algorithms

Vein characteristics most common:

 Number/Quality/Size/Location/ Visibility/Palpability

Risks:

- Chronic disease (Diabetes OR 2.1, SCD OR 3.5, IVDU OR 2.4)
- Obesity or emaciated
- Smaller gauge OR 6.4
- History of DIVA

Success:

- Visible veins OR 0.79-5.05
- ↑ procedural volume OR 4.4
- Certification
- Predicted success OR 1.06

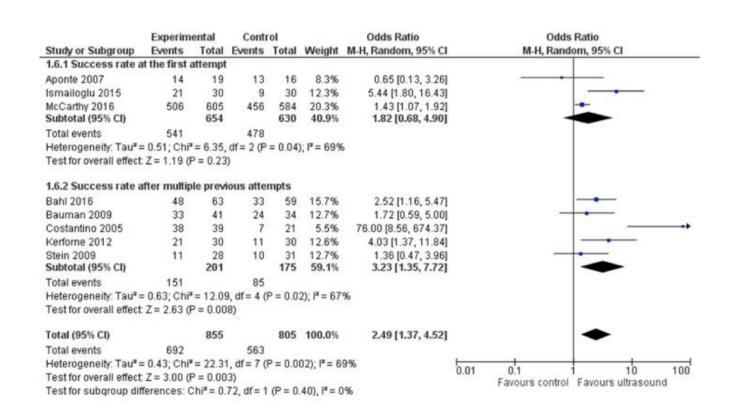
Consumer experience of DIVA

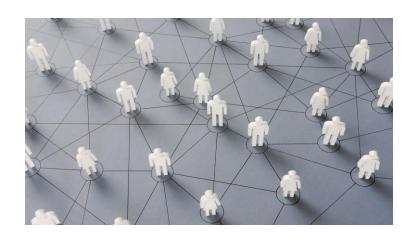
- 1st time success 44-58% inpatients, 77%-86% ED
- 25% had multiple inserters
- Some patients 10 attempts
- 28% had procedure abandoned or a CVAD inserted

Kleidon et al, JPCH 2019 Farrell et al, Canc Nurs Prac 2017 Marsh et al, JHM 2018 Rippey EMA 2016 Marsh et al, Trials 2018

Consumer survey (Cooke PLoS One 2018)

Questions	Adult Survey	n (%)	Paediatric Survey	n (%)	p value
	Responses		Responses		
n = 570			n = 142		
Last time you/your child needed an IV, how painful or stressful was the experience? °	Median (IQR)	4 (2, 7)		7 (5, 9)	<0.001^
1 = no pain/distress;	Minimal pain/distress (≤ 3)	268 (47.5)		25 (18)	
10 = extreme pain/distress	Moderate (4-7)	197 (34.9)		45 (32.4)	
	Severe pain/distress (≥ 8)	99 (17.5)		69 (49.6)	





DART3 - DIFFICULT ACCESS REQUIRES THOUGHT, TRAINING AND TECHNOLOGY

Co-developing an ultrasound pathway for patients with difficult intravenous access

Phase n° 1

Stakeholder and consumer interviews

Literature reviews of DIVA tools

Phase n° 2

Co-development and pilot test DIVA tools + implementation strategies

Evaluation of funding for PIVC insertion

Phase n° 3

Implement and evaluate the DIVA identification and escalation pathway effect on clinical and implementation outcomes

STUDY PROTOCOL

Open Access

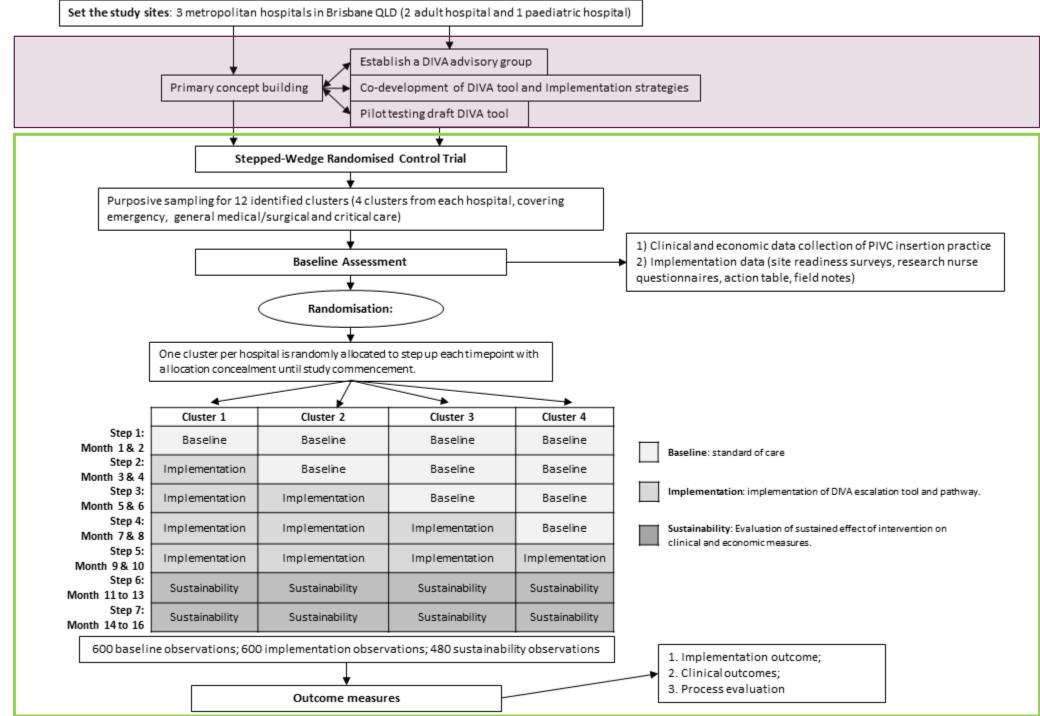
Phase 3. Clinical trial

Improving difficult peripheral intravenous access requires thought, training and technology (DART³): a stepped-wedge, cluster randomised controlled trial protocol

Jessica A Schults^{1,2,3,4,5,6*}, Nicole Marsh^{1,4,5}, Amanda J Ullman^{1,4,5,6,7}, Tricia M Kleidon^{1,4,5,6}, Robert S Ware⁸ Joshua Byrnes^{8,9}, Emily Young⁸, Lisa Hall^{3,10}, Gerben Keijzers^{8,11,12}, Louise Cullen¹³, Pauline Calleja^{5,14}, Steven McTaggart^{6,7}, Nathan Peters^{15,16}, Stuart Watkins¹¹, Amanda Corley^{1,4,5}, Christine Brown¹, Zhen Lin² Frances Williamson 13,15,17, Luke Burgess 4, Fiona Macfarlane 6, Marie Cooke 5, Callan Battley 6,7 and Claire M I

around half of insertion attempts are unsuccessful leading to delayed medical treatments and patient disco harm. Ultrasound-guided PIVC (USGPIVC) insertion is an evidence-based intervention shown to improve in success especially in patients with Difficult IntraVenous Access (BMC Health Serv Res 22:220, 2022), however the implementation in some healthcare settings remains suboptimal. This study aims to co-design interventions that optimise ultrasound guided PIVC insertion in patients with DIVA, implement and evaluate these initiatives and develop scale up activities.

Methods A stepped-wedge cluster randomized controlled trial will be conducted in three hospitals (two adult, one paediatric) in Queensland, Australia. The intervention will be rolled out across 12 distinct clusters (four per hospital). Intervention development will be guided by Michie's Behavior Change Wheel with the aim to increase local staff capability, opportunity, and motivation for appropriate, sustainable adoption of USGPIVC insertion. Eligible clusters include all wards or departments where > 10 PIVCs/week are typically inserted. All clusters will commence in the control (baseline) phase, then, one cluster per hospital will step up every two months, as feasible, to the implementation phase, where the intervention will be rolled out. Implementation strategies are tailored for each hospital by local investigators and advisory groups, through context assessments, staff surveys, and stakeholder interviews and informed by extensive consumer interviews and consultation. Outcome measures align with the RE-AIM framework including clinical-effectiveness outcomes (e.g., first-time PIVC insertion success for DIVA patients [primary outcome], number of insertion attempts); implementation outcomes (e.g., intervention fidelity, readiness assessment) and cost effectiveness outcomes. The Consolidated Framework for Implementation Research framework



Participants

Eligible clusters:

Emergency departments, inpatient wards, or day procedure units where >10 PIVCs/week are typically inserted.

* We excluded operating theatres, radiology, rehabilitation, or psychiatric units. Clinician emergencies where IO access was used were also excluded.

Included PIVC: Any patient (DIVA or non-DIVA) of any age requiring a PIVC

Sample size: Target 1680 observations

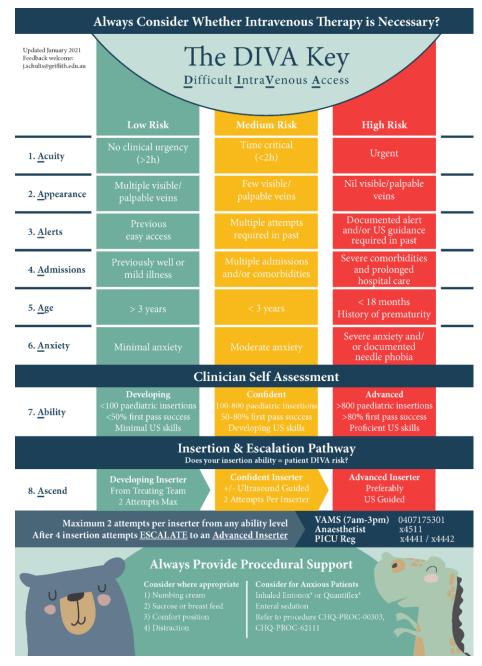
20 PIVC insertions per ward, per two-month step was expected, plus a further 20 PIVC insertion during each of the sustainability phases

Outcomes

Table 1 DART³ outcomes. Outcomes, definitions, and data collection organised by RE-AIM domains

Outcomes	Information	Data source
Patient and service level outcomes		
Primary		
First attempt insertion success in patients identified as DIVA	One needle puncture, by one inserter, to achieve successful insertion of a functional (can be aspirated/flushed) PIVC ²	Hospital-based assessments
Secondary		
First attempt insertion success for all patients (regardless of DIVA status)	One needle puncture, by one inserter, to achieve successful of a functional (can be aspirated/flushed) PIVC ²	Hospital-based assessments
Number of attempts	Number of skin punctures to attempt PIVC insertion ³	Hospital-based assessments
Procedure outcome:	Successful PIVC insertion; time from PIVC referral to PIVC insertion (censored at 48 h); alternate device; alternate route (e.g., oral) ⁴	Hospital-based assessments
PIVC failure	Composite measure of local infection, primary bloodstream infection (BSI), occlusion, infiltration/extravasation, dislodgement (includes leaking), thrombosis and/or phlebitis ⁶⁷	Hospital-based assessments
Insertion/post-insertion complications	Bruising, haematoma, nerve injury, arterial puncture, or skin injury as well as the individual components of PIVC failure (above) ⁶⁸	Hospital-based assessments
PIVC dwell time	Time from PIVC insertion to PIVC removal (in hours) ⁶	Hospital-based assessments
PIVC necessity	PIVC used for fluids or medications within 24 h (excluding patients who require a prophylactic PIVC in situ as part of their treatment e.g., status epilepticus) ⁵	Hospital-based assessments
Incidence of blood stream infection	Cluster level routinely-collected rates of primary BSI and S. Aureus BSI 9	Hospital-based assessments
Economic outcomes		
Cost-effectiveness	Direct and indirect healthcare costs to the health system, patients/ carers: (time to insertion/therapy, cost of products, number of staff, staff time, costs of responding to failed insertion including cancelled appointments)	Hospital-based assessments

co-designed


DART³ Intervention


- 1. Vein assessment tool
- 2. Escalation pathway +/- usg
- 3. Implementation strategies, including
 - Education on the use of the DIVA tool and escalation pathway
 - Training in ultrasound guided PIVC insertion
 - Support for trained staff (nurses and doctors) to become competent ultrasound guided PIVC inserters.

DIVA classification

Classified as non-DIVA, potential DIVA or DIVA by site DIVA assessment tool

• N.B. In baseline, vein assessment was by the inserter.

CFIR components

Intervention characteristics

- Co-designed intervention
- · Flexible escalation
- · Multidisciplinary and collaborative approach

Inner setting

- · Cultural belief ultrasound is for medical staff
- · Staff shortages influencing escalation processes and choice of intervention
- · Staff shortages influenced training availability

Outer setting

- Staffing shortages
- · Changes to cluster composition
- COVID-19 impacts

Characteristics of individuals

- Clinical staff fatigued
- Heavy workloads
- Staff supportive of change
- · Staff believe in the effectiveness of identifying DIVA early

Process

· Co-designed implementation

Implementation Research Logic Model: How DART3 is envisaged to work

Implementation strategies

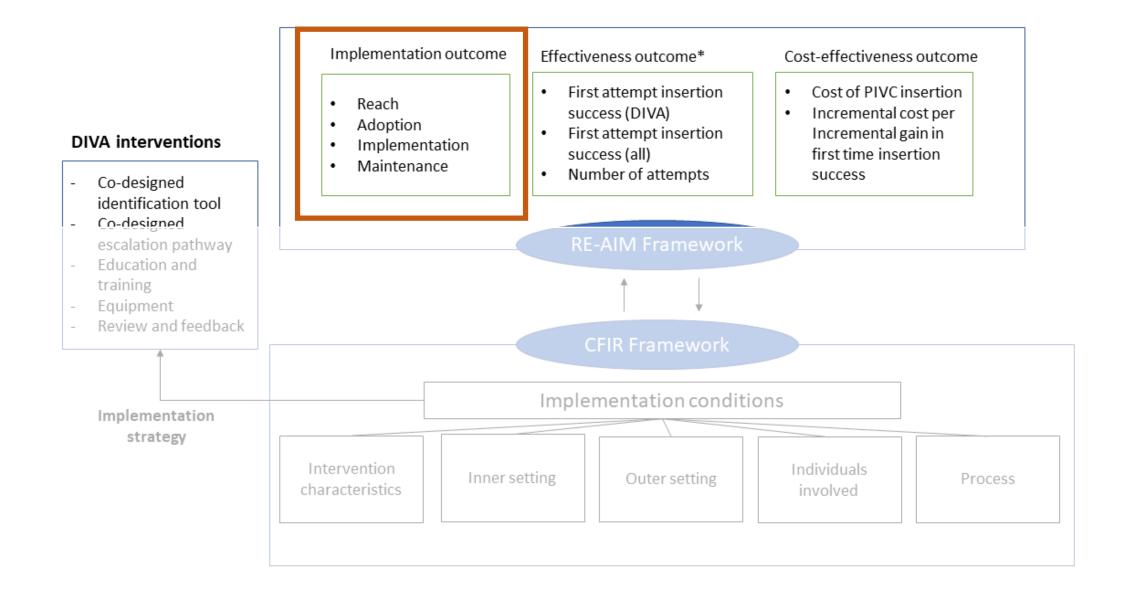
- · Customised DIVA tool and escalation pathway established at each site and adapted for Emergency and ICU departments (for in-house escalation)
- · Lanyards with escalation pathway for ward nursing staff.
- Badges and magnets to identify Ultrasound competent PIVC inserters
- Ultrasound machines sourced for each participating ward.
- · Training, USGPIVC workshops, hospital wide and ward specific as well as bedside education and support by research nurses.
- Mentoring / shadowing for USGPIVC trained nurses with vascular experts / teams
- Identification and upskilling of change champions for each participating ward
- Regular (per step) feedback for each site and ward with recruitment numbers, first attempt insertion success and upcoming news, such as workshops.
- · Development and local endorsement of clinical skill assessment tool for ultrasound guided PIVC insertion competency achievement in nursing staff.
- · Coffee vouchers and doughnuts rewards for wards with biggest recruitment

Mechanisms

- · Promotes multidisciplinary involvement
- Intervention flexible with cluster needs

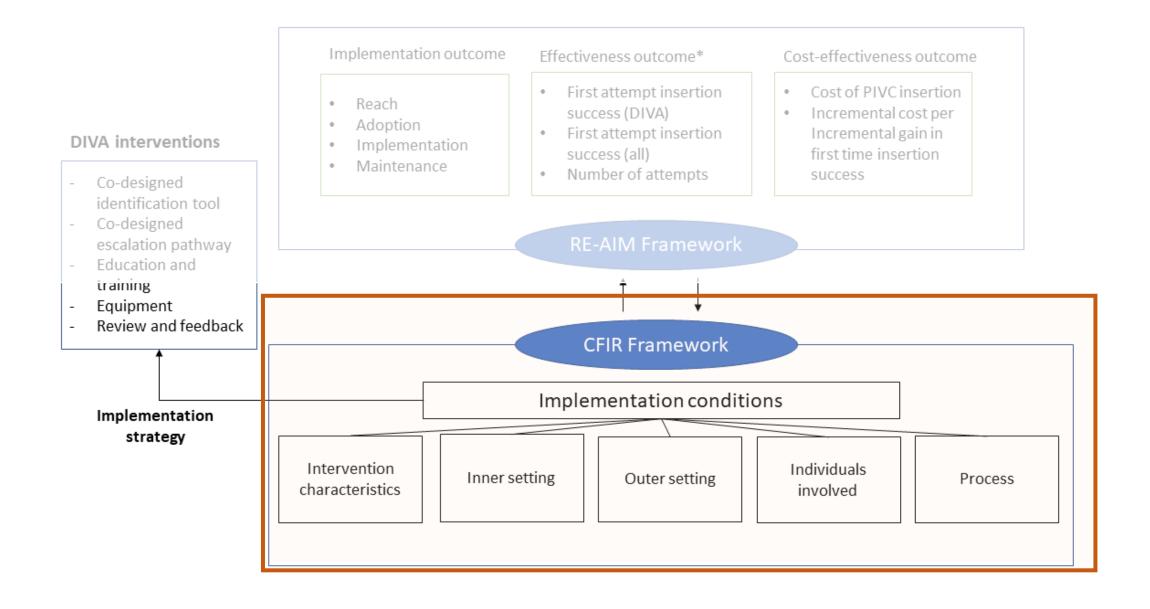
Intervention The DIVA Key <u>Difficult IntraVenous Access</u> ©ART3 Clinician Self Asse

Reduce:


- Number of attempts
- PIVC failure
- Insertion/post-insertion complications
- BSI infection

Cost outcomes

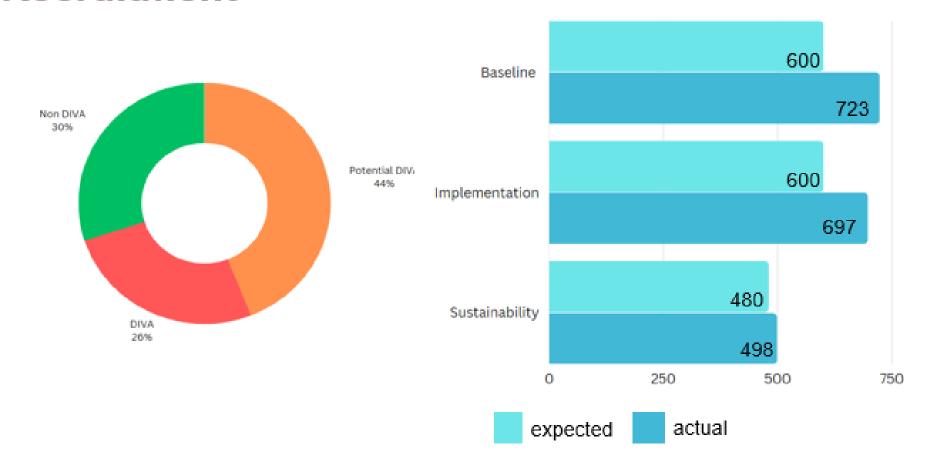
- Cost of PIVC insertion
- · Incremental cost per incremental gain in first time insertion success


Implementation outcomes

- Implementation
- Reach
- Adoption
- Maintenance & sustainability

^{1.}Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89(9):1322-7. 2.Glasgow RE, Harden SM, Gaglio B, Rabin B, Smith ML, Porter GC, et al. RE-AIM Planning and Evaluation Framework: Adapting to New Science and Practice With a 20-Year Review. Front Public Health. 2019;7:64.

^{3.}Keith RE, Crosson JC, O'Malley AS, Cromp D, Taylor EF. **Using the Consolidated Framework for Implementation Research (CFIR) to produce actionable findings: a rapid-cycle evaluation approach to improving implementation**. Implement Sci. 2017;12(1):15.


^{1.} Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89(9):1322-7.

^{2.} Glasgow RE, Harden SM, Gaglio B, Rabin B, Smith ML, Porter GC, et al. **RE-AIM Planning and Evaluation Framework: Adapting to New Science and Practice With a 20-Year Review**. Front Public Health. 2019;7:64.

^{3.} Keith RE, Crosson JC, O'Malley AS, Cromp D, Taylor EF. **Using the Consolidated Framework for Implementation Research (CFIR) to produce actionable findings: a rapid-cycle evaluation approach to improving implementation**. Implement Sci. 2017;12(1):15.

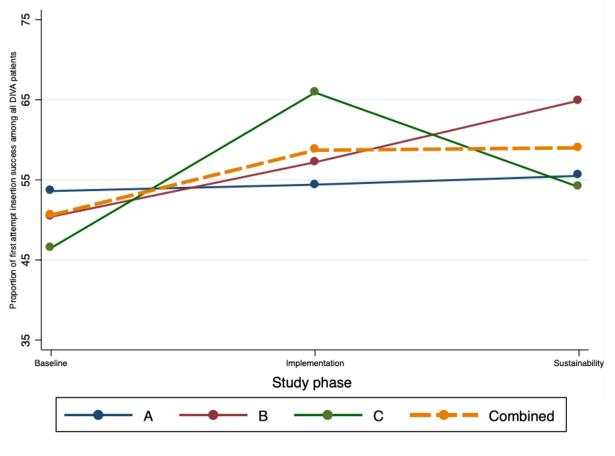
Results

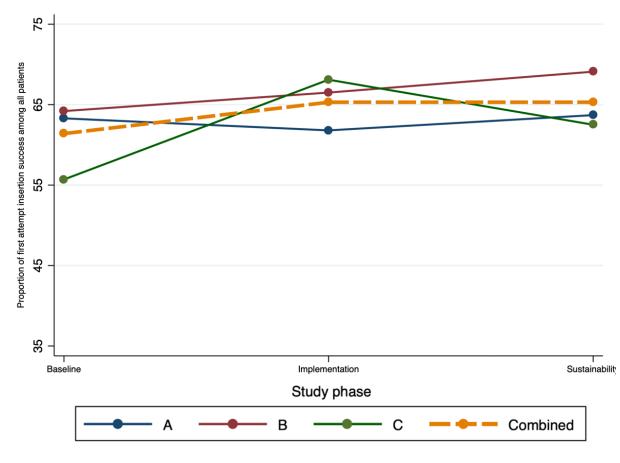
Recruitment

Participant Demographics

Characteristics	Baseline	Implementation	3-mo sustainability	6-mo sustainability
	Frequency (%) or Median (IQR)	Frequency (%) or Median (IQR)	Frequency (%) or Median (IQR)	Frequency (%) or Median (IQR)
	N=673	N=685	N=237	N=235
DIVA tool outcome				
Potential DIVA	285 (43%)	300 (44%)	120 (51%)	89 (38%)
Definite DIVA	192 (28%)	162 (24%)	51 (21%)	76 (32%)
Non-DIVA	196 (29%)	223 (32%)	66 (28%)	70 (30%)
Sex				
Male	386 (53%)	388 (57%)	141 (56%)	145 (59%)
Age in years				
Children (<18 yrs)	2 (0.2 to 8)	2 (0.3 to 11)	1 (0.3 to 7)	3 (0.2 to 10)
Adults (>18 yrs)	64 (47 to 76)	65 (51 to 75)	64.6 (48 to 75)	67.2 (51 to 76)

Primary outcome: First attempt insertion success

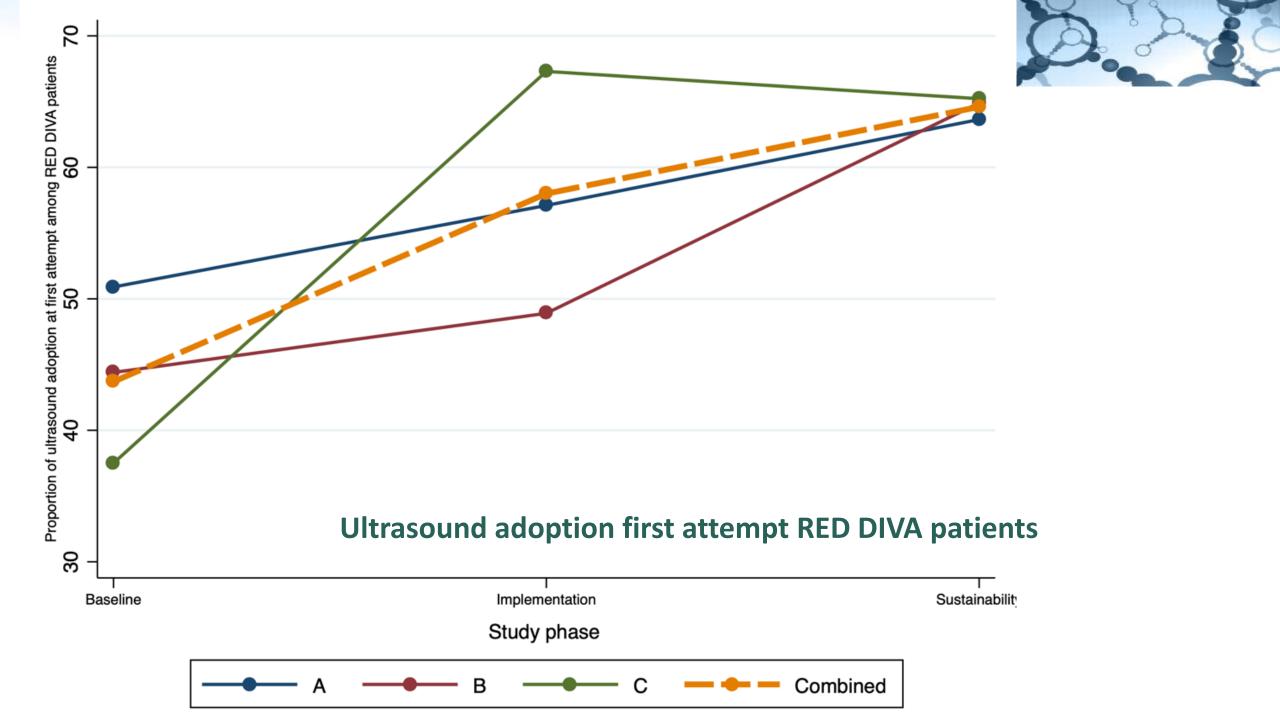

DIVA pts


	Baseline	Implementation	Sustainability
First attempt success among DEFINITE DIVA patients	80/192 (42%)	89/162 (55%)	67/127 (53%)
First attempt success among POTENTIAL DIVA patients	161/284 (57%)	182/300 (61%)	131/209 (63%)
First attempt success among ALL DIVA patients	241/476 (51%)	271/462 (59%)	198/336 (59%) 1.5 (1.1 to 2.2) 1

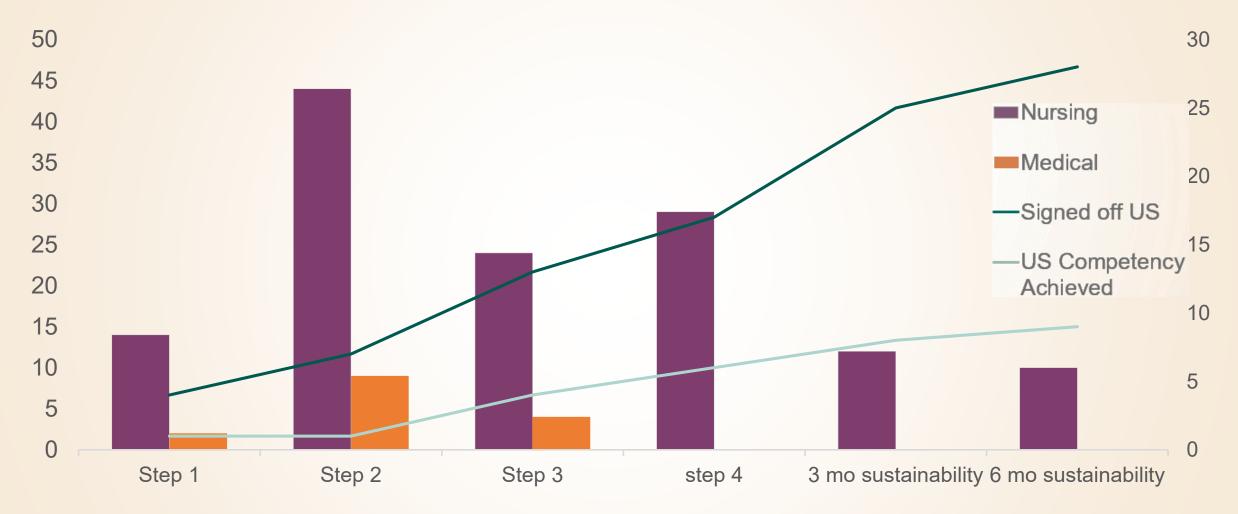
All pts

First attempt success among all patients	434/707 (61%)	452/692 (65%)	318/487 (65%)
all patients	, , ,	, , ,	, , ,

Proportion of first attempt insertion success


All DIVA

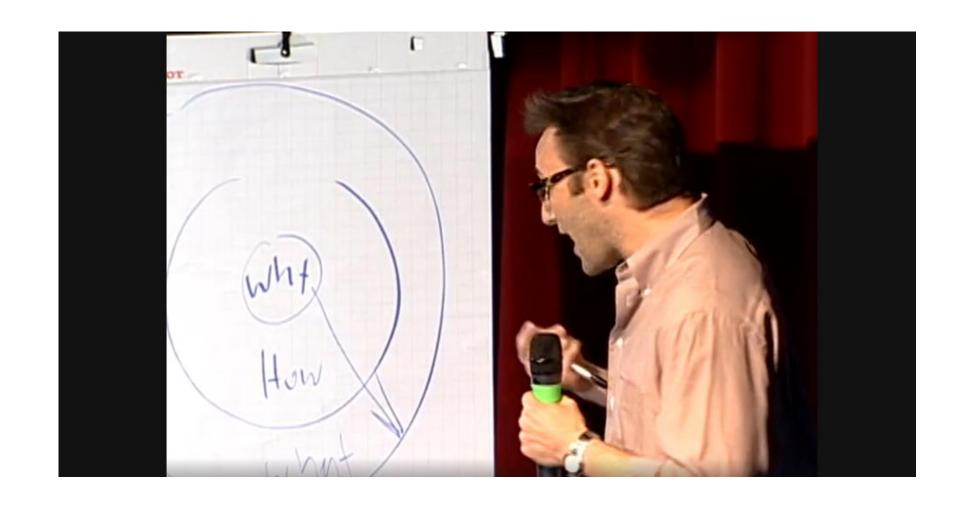
All patients


Ultrasound adoption

	Baseline	Implementation	Sustainability
First attempt among DEFINITE DIVA patients	69/158 (44%)	80/138 (58%)	53/82 (65%)
First attempt among DEFINITE DIVA patients	09/138 (44/8)		→ 3.4 (1.9 to 6.8)
<u>First</u> attempt among <u>POTENTIAL</u> DIVA patients	71/227 (31%)	62/259 (24%)	35/151 (23%)
First attempt among ALL DIVA nationts	140/385 (36%)	142/397 (36%)	88/233 (38%)
First attempt among ALL DIVA patients			1.6 (1.1 to 2.5)
Any attempt among DEFINITE DIVA patients	129/190 (68%)	125/161 (77%)	95/125 (76%)
with attempt among between brown patients		123/101 (7770)	→ 1.9 (1.1 to 3.6)
Any attempt among POTENTIAL DIVA patients	127/280 (45%)	109/295 (37%)	65/206 (32%)
Any attempt among ALL DIVA patients	256/470 (55%)	234/456 (51%)	160/331 (48%)

Reach: Ultrasound accreditation

^{*}Example of conversion to ultrasound guided PIVC insertion competence at one site; Sign off and competency numbers are cumulative



	Baseline	Implementation	Sustainability
Patient/carer satisfaction with insertion procedure	9.0 (7.0 to 10.0)	9.0 (8.0 to 10.0)	10.0 (8.0 to 10.0)
Patient/carer pain with insertion procedure	3.0 (1.0 to 5.0)	3.0 (1.0 to 5.0)	2.0 (1.0 to 4.0)
Staff satisfaction with insertion procedure	8.0 (6.0 to 10.0)	9.0 (8.0 to 10.0)	9.0 (8.0 to 10.0)

Global health-service change is hard

Start with a golden circle and the question: "Why?"

Ultrasound accreditation

Journal of Diagnostic Medical Sonography
Volume 35, Issue 5, September/October 2019, Pages 401-411
© The Author(s) 2019, Article Reuse Guidelines
https://doi.org/10.1177/8756479319838234

Literature Reviews

Accreditation, Diagnostic Med

Journal of the Intensive Care Society

PMCID: PMC5810880

PMID: 29456596

Kimberly Sorrentino,

Abstract

There are few regulation medical sonography (D) based by the operator, accreditation, credential papers and 42 editorials sonography specialty.

J Intensive Care Soc. 2018 Feb; 19(1): 15-18.

Published online 2017 Sep 28. doi: 10.1177/1751143717733163

Bridging the logistical gap between ultrasound enthusiasm and accreditation

George Reid,^{™1} Jonathan Bedford,² and Ben Attwood¹

▶ Author information ▶ Copyright and License information PMC Disclaimer

correlations between accreditation and improved quality and also a positive correlation between credentialing and improved image quality. The survey studies revealed overwhelming support for accreditation and credentialing. Many articles raised concerns about the unknown quality of sonograms performed in nonaccredited facilities or by uncredentialed sonographers. If facility accreditation and/or individual credentialing could be implemented nationwide in DMS, it may lead to increased quality within the field.

The benefit of a vascular access specialist placing a peripheral intravenous catheter: a narrative review of the

Table 1. Characteristics of included studies

literature

*Nicole Marsh^{1,2,3,4}, Emil

	Author (year)	State/Country	Setting	VAS team (label)	Comparison	Outcome measure
ı [Bosma (2002)	British Columbia, Canada	Single centre; non-critical medical and surgical wards	'Infusion nurses'	Not applicable	Number of consultations; successful PIVC insertion
, [Carr (2010)	Galway, Ireland	Single centre; hospital wide	IV 'Cannulation 'Team	Pre–post commencement of IV Cannulation Team	First-time insertion success
	Da Silva (2010)	Sau Paulo, Brazil	Single centre; medical, surgery, haematology and oncology units	'IV Team'	Pre–post commencement of IV Team	First-time insertion success; number of PIVCs; phlebitis
	Hunter (2003)	Wisconsin, USA	Single centre (Phase 2); medical and surgical wards	'Vascular Access Team'	Unclear	PIVC-related complication; number of insertion attempts
	Palefski (2001)	Unknown, USA	Multi-centre; hospital wide, 'Infusion centre'; and patients' homes	'Infusion nurse'	Generalist nurse	PIVC-related complications
	Meier (1998)	Iowa, USA	Single centre; acute and critical care wards	'Specialised IV Team'	House staff, medical students, and ward nurses	Primary BSIs
	Miller (1996)	Pennsylvania USA	Single centre; medical and surgical wards	'IV Therapy Team'	House staff and nursing personnel	PIVC-related infections
	Scalley (1992)	Colorado, USA	Single centre; hospital wide	'IV Team'	'Non-IVT'	Phlebitis
	Soifer (1998)	Illinois, USA	Single centre; medical inpatient service	'IV team'	Medical house staff	PIVC-related complications
	Tomford (1984)	Ohio, USA	Single centre; general medical firms (inpatient and outpatient units)	'IV team'	Medical house staff	PIVC-related complications

Thank you

- Patients involved in the study
- DART3 project team
- DART3 investigators
- Hospitals and health service partners
- Policy and government partners
- National Health and Medical Research Council
- University affiliates

Get In Touch

Email Address

j.schults@uq.edu.au

"The secret to being good at anything is to approach it like a curious idiot, rather than a know-it-all genius."

~ Mike Monteiro